

Python Client for Google Maps Services

googlemaps Module

	
class googlemaps.Client(key=None, client_id=None, client_secret=None, timeout=None, connect_timeout=None, read_timeout=None, retry_timeout=60, requests_kwargs=None, queries_per_second=60, queries_per_minute=6000, channel=None, retry_over_query_limit=True, experience_id=None, requests_session=None, base_url='https://maps.googleapis.com')

	Bases: object

Performs requests to the Google Maps API web services.

	Parameters

	
	key (string) – Maps API key. Required, unless “client_id” and
“client_secret” are set. Most users should use an API key.

	client_id (string) – (for Maps API for Work customers) Your client ID.
Most users should use an API key instead.

	client_secret (string) – (for Maps API for Work customers) Your client
secret (base64 encoded). Most users should use an API key instead.

	channel (str) – (for Maps API for Work customers) When set, a channel
parameter with this value will be added to the requests.
This can be used for tracking purpose.
Can only be used with a Maps API client ID.

	timeout (int) – Combined connect and read timeout for HTTP requests, in
seconds. Specify “None” for no timeout.

	connect_timeout (int) – Connection timeout for HTTP requests, in
seconds. You should specify read_timeout in addition to this option.
Note that this requires requests >= 2.4.0.

	read_timeout (int) – Read timeout for HTTP requests, in
seconds. You should specify connect_timeout in addition to this
option. Note that this requires requests >= 2.4.0.

	retry_timeout (int) – Timeout across multiple retriable requests, in
seconds.

	queries_per_second (int) – Number of queries per second permitted. Unset queries_per_minute to None. If set smaller number will be used.
If the rate limit is reached, the client will sleep for the
appropriate amount of time before it runs the current query.

	queries_per_minute (int) – Number of queries per minute permitted. Unset queries_per_second to None. If set smaller number will be used.
If the rate limit is reached, the client will sleep for the
appropriate amount of time before it runs the current query.

	retry_over_query_limit (bool) – If True, requests that result in a
response indicating the query rate limit was exceeded will be
retried. Defaults to True.

	experience_id (str) – The value for the HTTP header field name
‘X-Goog-Maps-Experience-ID’.

	requests_kwargs (dict) – Extra keyword arguments for the requests
library, which among other things allow for proxy auth to be
implemented. See the official requests docs for more info:
http://docs.python-requests.org/en/latest/api/#main-interface

	requests_session (requests.Session) – Reused persistent session for flexibility.

	base_url (string) – The base URL for all requests. Defaults to the Maps API
server. Should not have a trailing slash.

	Raises

	
	ValueError – when either credentials are missing, incomplete
or invalid.

	NotImplementedError – if connect_timeout and read_timeout are
used with a version of requests prior to 2.4.0.

	
addressvalidation(addressLines, regionCode=None, locality=None, enableUspsCass=None)

	The Google Maps Address Validation API returns a verification of an address
See https://developers.google.com/maps/documentation/address-validation/overview
request must include parameters below.
:param addressLines: The address to validate
:type addressLines: array
:param regionCode: (optional) The country code
:type regionCode: string
:param locality: (optional) Restrict to a locality, ie:Mountain View
:type locality: string
:param enableUspsCass For the “US” and “PR” regions only, you can optionally enable the Coding Accuracy Support System (CASS) from the United States Postal Service (USPS)
:type locality: boolean

	
clear_experience_id()

	Clears the experience ID for the HTTP header field name
‘X-Goog-Maps-Experience-ID’ if set.

	
directions(origin, destination, mode=None, waypoints=None, alternatives=False, avoid=None, language=None, units=None, region=None, departure_time=None, arrival_time=None, optimize_waypoints=False, transit_mode=None, transit_routing_preference=None, traffic_model=None)

	Get directions between an origin point and a destination point.

	Parameters

	
	origin (string, dict, list, or tuple) – The address or latitude/longitude value from which you wish
to calculate directions.

	destination (string, dict, list, or tuple) – The address or latitude/longitude value from which
you wish to calculate directions. You can use a place_id as destination
by putting ‘place_id:’ as a prefix in the passing parameter.

	mode (string) – Specifies the mode of transport to use when calculating
directions. One of “driving”, “walking”, “bicycling” or “transit”

	waypoints (a single location, or a list of locations, where a
location is a string, dict, list, or tuple) – Specifies an array of waypoints. Waypoints alter a
route by routing it through the specified location(s). To influence
route without adding stop prefix the waypoint with via, similar to
waypoints = [“via:San Francisco”, “via:Mountain View”].

	alternatives (bool) – If True, more than one route may be returned in the
response.

	avoid (list or string) – Indicates that the calculated route(s) should avoid the
indicated features.

	language (string) – The language in which to return results.

	units (string) – Specifies the unit system to use when displaying results.
“metric” or “imperial”

	region (string) – The region code, specified as a ccTLD (“top-level domain”
two-character value.

	departure_time (int or datetime.datetime) – Specifies the desired time of departure.

	arrival_time (int or datetime.datetime) – Specifies the desired time of arrival for transit
directions. Note: you can’t specify both departure_time and
arrival_time.

	optimize_waypoints (bool) – Optimize the provided route by rearranging the
waypoints in a more efficient order.

	transit_mode (string or list of strings) – Specifies one or more preferred modes of transit.
This parameter may only be specified for requests where the mode is
transit. Valid values are “bus”, “subway”, “train”, “tram”, “rail”.
“rail” is equivalent to [“train”, “tram”, “subway”].

	transit_routing_preference (string) – Specifies preferences for transit
requests. Valid values are “less_walking” or “fewer_transfers”

	traffic_model – Specifies the predictive travel time model to use.
Valid values are “best_guess” or “optimistic” or “pessimistic”.
The traffic_model parameter may only be specified for requests where
the travel mode is driving, and where the request includes a
departure_time.

	Return type

	list of routes

	
distance_matrix(origins, destinations, mode=None, language=None, avoid=None, units=None, departure_time=None, arrival_time=None, transit_mode=None, transit_routing_preference=None, traffic_model=None, region=None)

	Gets travel distance and time for a matrix of origins and destinations.

	Parameters

	
	origins (a single location, or a list of locations, where a
location is a string, dict, list, or tuple) – One or more addresses, Place IDs, and/or latitude/longitude
values, from which to calculate distance and time. Each Place ID string
must be prepended with ‘place_id:’. If you pass an address as a string,
the service will geocode the string and convert it to a
latitude/longitude coordinate to calculate directions.

	destinations (a single location, or a list of locations, where a
location is a string, dict, list, or tuple) – One or more addresses, Place IDs, and/or lat/lng values
, to which to calculate distance and time. Each Place ID string must be
prepended with ‘place_id:’. If you pass an address as a string, the
service will geocode the string and convert it to a latitude/longitude
coordinate to calculate directions.

	mode (string) – Specifies the mode of transport to use when calculating
directions. Valid values are “driving”, “walking”, “transit” or
“bicycling”.

	language (string) – The language in which to return results.

	avoid (string) – Indicates that the calculated route(s) should avoid the
indicated features. Valid values are “tolls”, “highways” or “ferries”.

	units (string) – Specifies the unit system to use when displaying results.
Valid values are “metric” or “imperial”.

	departure_time (int or datetime.datetime) – Specifies the desired time of departure.

	arrival_time (int or datetime.datetime) – Specifies the desired time of arrival for transit
directions. Note: you can’t specify both departure_time and
arrival_time.

	transit_mode (string or list of strings) – Specifies one or more preferred modes of transit.
This parameter may only be specified for requests where the mode is
transit. Valid values are “bus”, “subway”, “train”, “tram”, “rail”.
“rail” is equivalent to [“train”, “tram”, “subway”].

	transit_routing_preference (string) – Specifies preferences for transit
requests. Valid values are “less_walking” or “fewer_transfers”.

	traffic_model – Specifies the predictive travel time model to use.
Valid values are “best_guess” or “optimistic” or “pessimistic”.
The traffic_model parameter may only be specified for requests where
the travel mode is driving, and where the request includes a
departure_time.

	region (string) – Specifies the prefered region the geocoder should search
first, but it will not restrict the results to only this region. Valid
values are a ccTLD code.

	Return type

	matrix of distances. Results are returned in rows, each row
containing one origin paired with each destination.

	
elevation(locations)

	Provides elevation data for locations provided on the surface of the
earth, including depth locations on the ocean floor (which return negative
values)

	Parameters

	locations (a single location, or a list of locations, where a
location is a string, dict, list, or tuple) – List of latitude/longitude values from which you wish
to calculate elevation data.

	Return type

	list of elevation data responses

	
elevation_along_path(path, samples)

	Provides elevation data sampled along a path on the surface of the earth.

	Parameters

	
	path (string, dict, list, or tuple) – An encoded polyline string, or a list of latitude/longitude
values from which you wish to calculate elevation data.

	samples (int) – The number of sample points along a path for which to
return elevation data.

	Return type

	list of elevation data responses

	
find_place(input, input_type, fields=None, location_bias=None, language=None)

	A Find Place request takes a text input, and returns a place.
The text input can be any kind of Places data, for example,
a name, address, or phone number.

	Parameters

	
	input (string) – The text input specifying which place to search for (for
example, a name, address, or phone number).

	input_type (string) – The type of input. This can be one of either ‘textquery’
or ‘phonenumber’.

	fields (list) – The fields specifying the types of place data to return. For full details see:
https://developers.google.com/places/web-service/search#FindPlaceRequests

	location_bias (string) – Prefer results in a specified area, by specifying
either a radius plus lat/lng, or two lat/lng pairs
representing the points of a rectangle. See:
https://developers.google.com/places/web-service/search#FindPlaceRequests

	language (string) – The language in which to return results.

	Return type

	result dict with the following keys:
status: status code
candidates: list of places

	
geocode(address=None, place_id=None, components=None, bounds=None, region=None, language=None)

	Geocoding is the process of converting addresses
(like "1600 Amphitheatre Parkway, Mountain View, CA") into geographic
coordinates (like latitude 37.423021 and longitude -122.083739), which you
can use to place markers or position the map.

	Parameters

	
	address (string) – The address to geocode.

	place_id (string) – A textual identifier that uniquely identifies a place,
returned from a Places search.

	components (dict) – A component filter for which you wish to obtain a
geocode, for example: {'administrative_area': 'TX','country': 'US'}

	bounds (string or dict with northeast and southwest keys.) – The bounding box of the viewport within which to bias geocode
results more prominently.

	region (string) – The region code, specified as a ccTLD (“top-level domain”)
two-character value.

	language (string) – The language in which to return results.

	Return type

	list of geocoding results.

	
geolocate(home_mobile_country_code=None, home_mobile_network_code=None, radio_type=None, carrier=None, consider_ip=None, cell_towers=None, wifi_access_points=None)

	The Google Maps Geolocation API returns a location and accuracy
radius based on information about cell towers and WiFi nodes given.

See https://developers.google.com/maps/documentation/geolocation/intro
for more info, including more detail for each parameter below.

	Parameters

	
	home_mobile_country_code (string) – The mobile country code (MCC) for
the device’s home network.

	home_mobile_network_code (string) – The mobile network code (MCC) for
the device’s home network.

	radio_type (string) – The mobile radio type. Supported values are
lte, gsm, cdma, and wcdma. While this field is optional, it
should be included if a value is available, for more accurate
results.

	carrier (string) – The carrier name.

	consider_ip (bool) – Specifies whether to fall back to IP geolocation
if wifi and cell tower signals are not available. Note that the
IP address in the request header may not be the IP of the device.

	cell_towers (list of dicts) – A list of cell tower dicts. See
https://developers.google.com/maps/documentation/geolocation/intro#cell_tower_object
for more detail.

	wifi_access_points (list of dicts) – A list of WiFi access point dicts. See
https://developers.google.com/maps/documentation/geolocation/intro#wifi_access_point_object
for more detail.

	
get_experience_id()

	Gets the experience ID for the HTTP header field name
‘X-Goog-Maps-Experience-ID’

	Returns

	The experience ID if set

	Return type

	str

	
nearest_roads(points)

	Find the closest road segments for each point

Takes up to 100 independent coordinates, and returns the closest road
segment for each point. The points passed do not need to be part of a
continuous path.

	Parameters

	points (a single location, or a list of locations, where a
location is a string, dict, list, or tuple) – The points for which the nearest road segments are to be
located.

	Return type

	A list of snapped points.

	
place(place_id, session_token=None, fields=None, language=None, reviews_no_translations=False, reviews_sort='most_relevant')

	Comprehensive details for an individual place.

	Parameters

	
	place_id (string) – A textual identifier that uniquely identifies a place,
returned from a Places search.

	session_token (string) – A random string which identifies an autocomplete
session for billing purposes.

	fields – The fields specifying the types of place data to return,
separated by a comma. For full details see:
https://cloud.google.com/maps-platform/user-guide/product-changes/#places

	language (string) – The language in which to return results.

	reviews_no_translations (bool) – Specify reviews_no_translations=True to disable translation of reviews; reviews_no_translations=False (default) enables translation of reviews.

	reviews_sort (string) – The sorting method to use when returning reviews.
Can be set to most_relevant (default) or newest.

	Return type

	result dict with the following keys:
result: dict containing place details
html_attributions: set of attributions which must be displayed

	
places(query=None, location=None, radius=None, language=None, min_price=None, max_price=None, open_now=False, type=None, region=None, page_token=None)

	Places search.

	Parameters

	
	query (string) – The text string on which to search, for example: “restaurant”.

	location (string, dict, list, or tuple) – The latitude/longitude value for which you wish to obtain the
closest, human-readable address.

	radius (int) – Distance in meters within which to bias results.

	language (string) – The language in which to return results.

	min_price (int) – Restricts results to only those places with no less than
this price level. Valid values are in the range from 0 (most affordable)
to 4 (most expensive).

	max_price (int) – Restricts results to only those places with no greater
than this price level. Valid values are in the range from 0 (most
affordable) to 4 (most expensive).

	open_now (bool) – Return only those places that are open for business at
the time the query is sent.

	type (string) – Restricts the results to places matching the specified type.
The full list of supported types is available here:
https://developers.google.com/places/supported_types

	region (string) – The region code, optional parameter.
See more @ https://developers.google.com/places/web-service/search

	page_token (string) – Token from a previous search that when provided will
returns the next page of results for the same search.

	Return type

	result dict with the following keys:
results: list of places
html_attributions: set of attributions which must be displayed
next_page_token: token for retrieving the next page of results

	
places_autocomplete(input_text, session_token=None, offset=None, origin=None, location=None, radius=None, language=None, types=None, components=None, strict_bounds=False)

	Returns Place predictions given a textual search string and optional
geographic bounds.

	Parameters

	
	input_text (string) – The text string on which to search.

	session_token (string) – A random string which identifies an autocomplete
session for billing purposes.

	offset (int) – The position, in the input term, of the last character
that the service uses to match predictions. For example,
if the input is ‘Google’ and the offset is 3, the
service will match on ‘Goo’.

	origin (string, dict, list, or tuple) – The origin point from which to calculate straight-line distance
to the destination (returned as distance_meters).
If this value is omitted, straight-line distance will
not be returned.

	location (string, dict, list, or tuple) – The latitude/longitude value for which you wish to obtain the
closest, human-readable address.

	radius (int) – Distance in meters within which to bias results.

	language (string) – The language in which to return results.

	types (string) – Restricts the results to places matching the specified type.
The full list of supported types is available here:
https://developers.google.com/places/web-service/autocomplete#place_types

	components (dict) – A component filter for which you wish to obtain a geocode.
Currently, you can use components to filter by up to 5 countries for
example: {'country': ['US', 'AU']}

	strict_bounds (bool) – Returns only those places that are strictly within
the region defined by location and radius.

	Return type

	list of predictions

	
places_autocomplete_query(input_text, offset=None, location=None, radius=None, language=None)

	Returns Place predictions given a textual search query, such as
“pizza near New York”, and optional geographic bounds.

	Parameters

	
	input_text (string) – The text query on which to search.

	offset (int) – The position, in the input term, of the last character
that the service uses to match predictions. For example, if the input
is ‘Google’ and the offset is 3, the service will match on ‘Goo’.

	location (string, dict, list, or tuple) – The latitude/longitude value for which you wish to obtain the
closest, human-readable address.

	radius (number) – Distance in meters within which to bias results.

	language (string) – The language in which to return results.

	Return type

	list of predictions

	
places_nearby(location=None, radius=None, keyword=None, language=None, min_price=None, max_price=None, name=None, open_now=False, rank_by=None, type=None, page_token=None)

	Performs nearby search for places.

	Parameters

	
	location (string, dict, list, or tuple) – The latitude/longitude value for which you wish to obtain the
closest, human-readable address.

	radius (int) – Distance in meters within which to bias results.

	region (string) – The region code, optional parameter.
See more @ https://developers.google.com/places/web-service/search

	keyword (string) – A term to be matched against all content that Google has
indexed for this place.

	language (string) – The language in which to return results.

	min_price (int) – Restricts results to only those places with no less than
this price level. Valid values are in the range from 0
(most affordable) to 4 (most expensive).

	max_price (int) – Restricts results to only those places with no greater
than this price level. Valid values are in the range
from 0 (most affordable) to 4 (most expensive).

	name (string or list of strings) – One or more terms to be matched against the names of places.

	open_now (bool) – Return only those places that are open for business at
the time the query is sent.

	rank_by (string) – Specifies the order in which results are listed.
Possible values are: prominence (default), distance

	type (string) – Restricts the results to places matching the specified type.
The full list of supported types is available here:
https://developers.google.com/places/supported_types

	page_token (string) – Token from a previous search that when provided will
returns the next page of results for the same search.

	Return type

	result dict with the following keys:
status: status code
results: list of places
html_attributions: set of attributions which must be displayed
next_page_token: token for retrieving the next page of results

	
places_photo(photo_reference, max_width=None, max_height=None)

	Downloads a photo from the Places API.

	Parameters

	
	photo_reference (string) – A string identifier that uniquely identifies a
photo, as provided by either a Places search or Places detail request.

	max_width (int) – Specifies the maximum desired width, in pixels.

	max_height (int) – Specifies the maximum desired height, in pixels.

	Return type

	iterator containing the raw image data, which typically can be
used to save an image file locally. For example:

f = open(local_filename, 'wb')
for chunk in client.places_photo(photo_reference, max_width=100):
 if chunk:
 f.write(chunk)
f.close()

	
reverse_geocode(latlng, result_type=None, location_type=None, language=None)

	Reverse geocoding is the process of converting geographic coordinates into a
human-readable address.

	Parameters

	
	latlng (string, dict, list, or tuple) – The latitude/longitude value or place_id for which you wish
to obtain the closest, human-readable address.

	result_type (string or list of strings) – One or more address types to restrict results to.

	location_type (list of strings) – One or more location types to restrict results to.

	language (string) – The language in which to return results.

	Return type

	list of reverse geocoding results.

	
set_experience_id(*experience_id_args)

	Sets the value for the HTTP header field name
‘X-Goog-Maps-Experience-ID’ to be used on subsequent API calls.

	Parameters

	experience_id_args (string varargs) – the experience ID

	
snap_to_roads(path, interpolate=False)

	Snaps a path to the most likely roads travelled.

Takes up to 100 GPS points collected along a route, and returns a similar
set of data with the points snapped to the most likely roads the vehicle
was traveling along.

	Parameters

	
	path (a single location, or a list of locations, where a
location is a string, dict, list, or tuple) – The path to be snapped.

	interpolate (bool) – Whether to interpolate a path to include all points
forming the full road-geometry. When true, additional interpolated
points will also be returned, resulting in a path that smoothly follows
the geometry of the road, even around corners and through tunnels.
Interpolated paths may contain more points than the original path.

	Return type

	A list of snapped points.

	
snapped_speed_limits(path)

	Returns the posted speed limit (in km/h) for given road segments.

The provided points will first be snapped to the most likely roads the
vehicle was traveling along.

	Parameters

	path (a single location, or a list of locations, where a
location is a string, dict, list, or tuple) – The path of points to be snapped.

	Return type

	dict with a list of speed limits and a list of the snapped points.

	
speed_limits(place_ids)

	Returns the posted speed limit (in km/h) for given road segments.

	Parameters

	place_ids (str or list) – The Place ID of the road segment. Place IDs are returned
by the snap_to_roads function. You can pass up to 100 Place IDs.

	Return type

	list of speed limits.

	
static_map(size, center=None, zoom=None, scale=None, format=None, maptype=None, language=None, region=None, markers=None, path=None, visible=None, style=None)

	Downloads a map image from the Maps Static API.

See https://developers.google.com/maps/documentation/maps-static/intro
for more info, including more detail for each parameter below.

	Parameters

	
	size – Defines the rectangular dimensions of the map image.

	center (dict or list or string) – Defines the center of the map, equidistant from all edges
of the map.

	zoom (int) – Defines the zoom level of the map, which determines the
magnification level of the map.

	scale (int) – Affects the number of pixels that are returned.

	format (string) – Defines the format of the resulting image.

	maptype (string) – defines the type of map to construct. There are several
possible maptype values, including roadmap, satellite, hybrid,
and terrain.

	language (string) – defines the language to use for display of labels on
map tiles.

	region (string) – defines the appropriate borders to display, based on
geo-political sensitivities.

	markers (StaticMapMarker) – define one or more markers to attach to the image at
specified locations.

	path (StaticMapPath) – defines a single path of two or more connected points to
overlay on the image at specified locations.

	visible (list of dict) – specifies one or more locations that should remain visible
on the map, though no markers or other indicators will be displayed.

	style (list of dict) – defines a custom style to alter the presentation of
a specific feature (roads, parks, and other features) of the map.

	Return type

	iterator containing the raw image data, which typically can be
used to save an image file locally. For example:

```
f = open(local_filename, ‘wb’)
for chunk in client.static_map(size=(400, 400),



center=(52.520103, 13.404871),
zoom=15):





	if chunk:

	f.write(chunk)








f.close()
```


	
timezone(location, timestamp=None, language=None)

	Get time zone for a location on the earth, as well as that location’s
time offset from UTC.

	Parameters

	
	location (string, dict, list, or tuple) – The latitude/longitude value representing the location to
look up.

	timestamp (int or datetime.datetime) – Timestamp specifies the desired time as seconds since
midnight, January 1, 1970 UTC. The Time Zone API uses the timestamp to
determine whether or not Daylight Savings should be applied. Times
before 1970 can be expressed as negative values. Optional. Defaults to
datetime.utcnow().

	language (string) – The language in which to return results.

	Return type

	dict

googlemaps.exceptions Module

Defines exceptions that are thrown by the Google Maps client.

	
exception googlemaps.exceptions.ApiError(status, message=None)

	Bases: Exception

Represents an exception returned by the remote API.

	
exception googlemaps.exceptions.HTTPError(status_code)

	Bases: googlemaps.exceptions.TransportError

An unexpected HTTP error occurred.

	
exception googlemaps.exceptions.Timeout

	Bases: Exception

The request timed out.

	
exception googlemaps.exceptions.TransportError(base_exception=None)

	Bases: Exception

Something went wrong while trying to execute the request.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 googlemaps	

 	
 	
 googlemaps.exceptions	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | N
 | P
 | R
 | S
 | T

A

 	
 	addressvalidation() (googlemaps.Client method)

 	
 	ApiError

C

 	
 	clear_experience_id() (googlemaps.Client method)

 	
 	Client (class in googlemaps)

D

 	
 	directions() (googlemaps.Client method)

 	
 	distance_matrix() (googlemaps.Client method)

E

 	
 	elevation() (googlemaps.Client method)

 	
 	elevation_along_path() (googlemaps.Client method)

F

 	
 	find_place() (googlemaps.Client method)

G

 	
 	geocode() (googlemaps.Client method)

 	geolocate() (googlemaps.Client method)

 	
 	get_experience_id() (googlemaps.Client method)

 	googlemaps (module)

 	googlemaps.exceptions (module)

H

 	
 	HTTPError

N

 	
 	nearest_roads() (googlemaps.Client method)

P

 	
 	place() (googlemaps.Client method)

 	places() (googlemaps.Client method)

 	places_autocomplete() (googlemaps.Client method)

 	
 	places_autocomplete_query() (googlemaps.Client method)

 	places_nearby() (googlemaps.Client method)

 	places_photo() (googlemaps.Client method)

R

 	
 	reverse_geocode() (googlemaps.Client method)

S

 	
 	set_experience_id() (googlemaps.Client method)

 	snap_to_roads() (googlemaps.Client method)

 	
 	snapped_speed_limits() (googlemaps.Client method)

 	speed_limits() (googlemaps.Client method)

 	static_map() (googlemaps.Client method)

T

 	
 	Timeout

 	
 	timezone() (googlemaps.Client method)

 	TransportError

 nav.xhtml

 Table of Contents

 		
 Python Client for Google Maps Services

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

